

Andrew Solutions™

FlexTwist
Waveguide Components

FlexTwist® Waveguide Components

What is the value of low-loss, high-performance waveguide? In a word: inestimable.

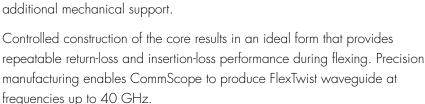
Your waveguide is a critical link in point-to-point and point-to-multipoint digital radio links. Its value, however, is not absolute. Every RF microwave environment is unique. The only true measure of the value of your waveguide is how well it performs within the context of your individual system. Does it provide an exact match—physically, electrically, and environmentally?

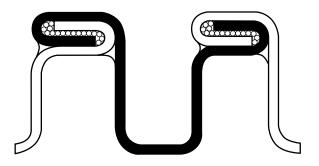
With more than 900 flexible waveguide configurations, CommScope FlexTwist® waveguide components provide an optimum solution for virtually any application.

- 3.3–40.0 GHz frequency range
- 10 waveguide sizes
- 300–1200 mm (12–48 in) assembly lengths

Each FlexTwist waveguide component is engineered to provide exceptional low-loss electrical performance, plus fast, accurate installation for your most challenging environments.

Excellent performance for your unique RF microwave environment


FlexTwist waveguide components provide excellent vibration isolation and eliminate many of the installation problems caused by misalignment. Recognized for the ability to aid in positioning and aligning parabolic reflectors in line-of-sight microwave radio links, FlexTwist waveguide components are used in a variety of military and commercial applications


FlexTwist waveguide is designed and tested for applications ranging from 3.3 to 40.0 GHz and are available in a variety of lengths, from 300–1200 mm (12–48 in). FlexTwist waveguide components are available with American or European standard flanges, making them suitable for a wide variety of applications.

All FlexTwist waveguide components are manufactured and tested at CommScope's ISO 14001-certified facilities.

Core construction

The FlexTwist waveguide core is created by helically winding a silver coated brass strip to form a continuous, uniform rectangular tube. A solder fillet is then wound around the core, creating a seal that eliminates RF and pressure leakage. A protective neoprene jacket provides additional mechanical support.

FlexTwist Waveguide Core highlighting the solder fillet

Jacketing

A neoprene jacket provides environmental and mechanical protection to the precision performance core and enhances overall mechanical support. The jackets are highly resistant to oil, other fluids and ozone attack. This outer protective layer is vulcanized to the waveguide using thermal compression to support the convolutions during flexing. CommScope offers a neoprene protective covering to suit most needs.

Flanges

A full range of flange styles are available with each waveguide size as defined in the table. Flanges are offered to IEC-R and American E.I.A. WR specifications in brass material.

Design Characteristics

Average power

Average power handling is estimated based on figures derived from the peak power ratings indicated in IEC 636. All high-power performance specifications in this document have been calculated from existing data and are offered for advice only.

Peak power

The peak power handling capability is based on data published in IEC 636 for the lower end of the designated frequency band. It represents the theoretical breakdown value at a frequency of 1.5 times cut-off. It assumes that breakdown in dry air and at normal temperature and pressure (N.T.P.) occurs at 30,000 V/cm. It also assumes a power safety factor of 2.25 and a voltage reflection factor of 0.2 (VSWR = 1.5) in the system under test. The duty cycle must be less than 0.001. The values provided in the tables are for information only.

Humidity and environmental characteristics

Environmental Characteristics						
Operating Temperature Range	-55 to +100°c					
Fluid Resistance	Oil, Ozone					
Environmental Resistance	Good					

Humidity, in general, will not affect a flexible waveguide. However, low surface temperatures may cause condensation, which can penetrate non-sealed flanges through capillary action. Non-jacketed flexible waveguide is also prone to condensation. Long sections of waveguide should be sealed or regularly purged with dry air. When deployed in humid environments, a static desiccant or DryLine® dehydrator should be used to prevent moisture development.

FlexTwist waveguide is considered suitable for use in most environments, provided it is fitted with the standard neoprene jacket.

Vibration

Vibration of the flexible waveguide should be kept to a minimum if the unit is in a stressed (tensile) condition, as the rubber jacket may become more susceptible to ozone and environmental damage.

Design application, installation and handling instructions

FlexTwist waveguide components are not designed to be dimensionally equivalent to rigid waveguide, but they are designed to be electrically equivalent and compatible with the equivalent waveguide size.

FlexTwist waveguide components maintain return-loss and insertion-loss performance through flexing. Due to its design, FlexTwist cannot be considered "phase stable" when flexed, since this will alter the electrical length of the assembly.

RF power can be transmitted across the entire band of the equivalent rigid waveguide size. Narrow bandwidth FlexTwists are available in some frequency bands in order to provide improved return loss performance.

In handling any FlexTwist waveguide component, particular attention must be paid to the minimum bend radius, per the specifications.

FlexTwist waveguide assembly lengths

FlexTwist waveguide components are available in a variety of standard lengths, from 300-1200 mm, as shown in the specifications. The assembly length is the measured distance between the front face of both flanges. The standard recommended lengths represent a $\pm 3\%$ manufacturing tolerance.

Static bend radius

Static bend radius is the minimum bend that an assembly may be subject to without repeat movement (except as a consequence of small vibrations or axial expansions). CommScope designs FlexTwist waveguide with additional support at the flange to the flexible joint. However, care should be taken not to subject the back of the flange to the minimum static bend radius.

Testing

All CommScope FlexTwist waveguide components are tested for insertion-loss and return-loss swept over the stipulated frequency band.

Use and limitations of flexible waveguide

Flexible waveguide is generally used to compensate for mechanical misalignment and thermal expansion, to facilitate installation and to decouple the effects of vibration.

Flexible waveguide is not as robust as its rigid counterpart where excessive internal or external pressure can markedly altar the return loss.

Long lengths of flexible waveguide are not recommended over elliptical or rigid waveguide due to the inherently higher attenuation values.

Ordering information

The examples below describe the ezGuide $^{\text{TM}}$ numbering for flexible waveguide:

FlexTwist ordering information—F137CCS1 (8 characters in product code)

Product Code	Waveguide Size Code	Flange A** Code	Flange B** Code	Frequency Code	Length Code	
F	137	С	С	S	1	
Description: Flex Twist	WR137	Flange A is a CPR137G	Flange B is a CPR137G	Frequency of GHz 5.850 - 8.200	Length is 300 mm/12 in	

1	=	300	(12)
2	=	600	(24)
3	=	900	(36)
4	=	1000	
5	=	1200	(48)
*In	ch	es are f	or reference only.

Flange Codes, Descriptions and Availability

Code	Flange Type*	Description	Available for Waveguide Size Codes
В	UG-Cover	Through Holes, No Gasket or Choke Grooves, Square Flange	028, 042, 062, 075, 090, 112
С	CPR()G	Through Holes, Gasket Groove, Rectangular Flange	090, 112, 137, 187, 229
Е	CMR	Alternate Tapped Holes, No Gasket Groove, Rectangular Flange	090, 112, 137, 187
Н	PDR	Through Holes, Gasket Groove, Rectangular Flange	062, 075, 090, 112, 137, 187, 229
K	PBR	Through Holes, Gasket Groove, No Choke, Square Flange	028, 034, 042, 062, 075, 090, 112
L	UDR	Through Holes, No Gasket Groove, Rectangular Flange	062, 075, 090, 112, 137, 187, 229
М	UBR	Through Holes, No Gasket Groove, No Choke, Square Flange	028, 034, 042, 062, 075, 090, 112

^{**} Enter Flange Codes in alphabetical order (e.g. F042 ABS1)

Size and frequency codes

EIA	RCSC	IEC	Size Code	Waveguide Code	Frequency (GHz)
WR28	WG22	R320	028	S	26.50 - 40.00
				Α	37.00 - 40.00
WR34	WG21	R260	034	S	22.00 - 33.00
WR42	WG20	R220	042	S	17.70 - 26.50
WR62	WG18	R140	062	S	12.40 - 18.00
WR75	WG17	R120	075	S	10.00 - 15.00
WR90	WG16	R100	090	S	8.20 - 12.4
				В	10.7 - 11.7
WR112	WG15	R84	112	S	7.050 - 10.00
				С	7.125 - 8.500
WR137	WG14	R70	137	S	5.850 - 8.200
				В	6.425 - 7.125
				С	7.125 - 7.750
				D	5.725 - 6.425
WR187	WG12	R48	187	S	3.95 - 5.85
				Α	4.40 - 5.00
WR229	WG11A	R40	229	S	3.30 - 4.90
				Α	3.54 - 4.20

Ordering information

The Jacket

A jacket will provide environmental and mechanical protection to the precision performance core as well as mechanical support. Andrew offers a neoprene protective covering to suit most needs. The neoprene jacket is vulcanized to the waveguide using thermal compression techniques. These vulcanized jackets provide support to the convolutions during flexing. The jackets are resistant to oil and other fluids and have a high resistance to ozone attack.

Flanges

A full range of flange styles are available with each waveguide size as defined in the table. Flanges are offered to IEC-R and American E.I.A. WR specifications in brass material

Environmental Characteristics							
Operating Temperature Range	-55 to +100°c						
Fluid Resistance	Oil, Ozone						
Environmental Resistance	Good						

FlexTwist Sections

EIA	RCSC	IEC	Frequency (GHz)	300 - 900 mm (12-36 in)	NR ¹ 1000 - 1200 mm (48 in)	Attenuation dB/m (dB/ft)	Average Power watts	Peak Power kW	Max Twist deg/m (deg/ft)	Min E-Bend Radius mm (in)	Min H-Bend Radius mm (in)	Pressure Ib/in (kPa)
WR28	WG22	R320	26.50 - 40.00	On Request	On Request	3.28 (1.00)	75	20	510 (155)	38 (1.5)	76 (3.0)	45 (310)
			37.00 - 40.00	1.20	1.25							
WR34	WG21	R260	22.00 - 33.00	1.20	1.25	2.95 (0.90)	75	20	510 (155)	38 (1.5)	76 (3.0)	45 (310)
WR42	WG20	R220	17.70 - 26.50	1.25	1.35	2.62 (0.80)	100	39	510 (155)	38 (1.5)	76 (3.0)	45 (310)
WR62	WG18	R140	12.40 - 18.00	1.10	1.20	0.99 (0.30)	400	100	445 (135)	52 (2.0)	102 (4.0)	45 (310)
WR75	WG17	R120	10.00 - 15.00	1.10	1.13	0.59 (0.18)	750	140	360 (110)	64 (2.5)	115 (4.5)	45 (310)
WR90	WG16	R100	8.20 - 12.4	1.10	1.13	0.43 (0.13)	960	180	310 (95)	64 (2.5)	127 (5.0)	45 (310)
			10.7 - 11.7	1.03	1.05							
WR112	WG15	R84	7.050 - 10.00	1.10	1.13	0.40 (0.12)	1,260	315	264 (80)	76 (3.0)	152 (6.0)	35 (240)
			7.125 - 8.500	1.04	1.05							
WR137	WG14	R70	5.850 - 8.200	1.10	1.10	0.30 (0.09)	2,000	500	214 (65)	102 (4.0)	204 (8.0)	30 (205)
			6.425 - 7.125	1.03	1.05							
			7.125 - 7.750	1.03	1.05							
			5.725 - 6.425	1.03	1.05							
WR187	WG12	R48	3.95 - 5.85	1.10	1.10	0.17 (0.05)	3,000	1,250	165 (50)	165 (6.5)	330 (13.0)	30 (205)
			4.40 - 5.00	1.03	1.05							
WR229 \	WG11A	R40	3.30 - 4.90	1.10	1.10	0.13 (0.04)	4,000	1,550	132 (40)	165 (6.5)	330 (13.0)	30 (205)
			3.54 - 4.20	1.03	1.05							

Note:

For additional information

For additional information on the complete selection of FlexTwist waveguide components, visit the Andrew eCatalog at **awapps.commscope.com/catalog**.

^{1.} VSWR figures are based on plain flanges. Degraded figures can be expected with choke flanges.

We're proud to be a part of your network's story.

Here at CommScope, we embrace our role as a trusted resource, partner, and facilitator. We create the infrastructure that connects the world and evolves with every advance in technology. By investing all of our capabilities, resources, relationships, and products into your toughest challenges, we continue our long history of solving problems together—paving the way for new ideas and fresh ways of thinking.

We're a trusted resource and partner around the world because we're invested in you: your people, your networks, your success. It inspires us to build relationships and infrastructure... connect people and technologies across protocols, oceans, and time zones... and share what we learn along the way. We'll never stop connecting and evolving networks for the business of life at home, at work, and on the go.

This is our promise to you. This is CommScope.

www.commscope.com

Visit our website or contact your local CommScope representative for more information.

© 2012 CommScope, Inc. All rights reserved.

All trademarks identified by ® or ™ are registered trademarks or trademarks, respectively, of CommScope, Inc. This document is for planning purposes only and is not intended to modify or supplement any specifications or warranties relating to CommScope products or services.

BR-105349-EN (09/12)

Looking for the Andrew flash?

As a valued Andrew Solutions customer, we'd like to thank you for your loyalty and business. As we celebrate 75 years of the Andrew brand, we realized that many customers have come to see the Andrew "flash" logo as synonymous with our long history of high-quality wireless solutions, dedicated service, and industry-leading innovation.

The Andrew flash logo has changed. Our commitment to you is as strong as ever.

Over the years, our logo has evolved, just as our portfolio has evolved to better meet your network needs. As you may know, Andrew Solutions was acquired by CommScope in 2007. While CommScope serves many customers across multiple geographies and markets, some customers didn't realize the full breadth of our solutions. We soon realized that to tell a more unified story about who we are and what we do, we would need to better integrate the Andrew portfolio of wireless solutions into the CommScope brand.

So while you may no longer see the Andrew flash and colors on our letters, statements or products, you can still rely on the same strong tradition of Andrew quality, service and innovation you've come to expect—only now under the CommScope name and our new dynamic logo.

1943

1973

1984

